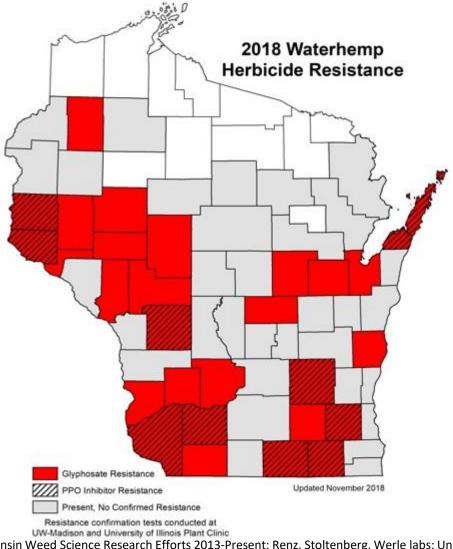


Considerations for Fall 2021: Weed Seed Management and Cover Crop Establishment

Daniel H. Smith, CCA

Southwest Regional Specialist Nutrient and Pest Management Program

University of Wisconsin-Madison CALS and Division of Extension



Disclaimer: Any use of trade names is for descriptive purposes and does not represent an endorsement by the author.

Why Fall Weed Seed Management Matters

Source: Wisconsin Weed Science Research Efforts 2013-Present; Renz, Stoltenberg, Werle labs; University of

Wisconsin-Madison; Illinois Plant Clinic Dataset

Fall Weed Seed Management- Seed Retention

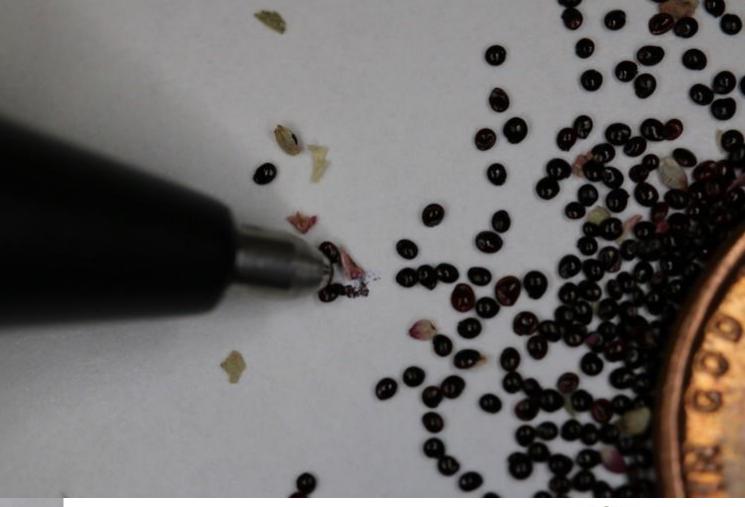
WEED SEED PRODUCTION & RETENTION IN SOYBEAN

TABLE 1		Seed Produc	tion per plant	Seed Retention % at harvest		
		2013	2014	2013	2014	
	Arkansas	$50,022 \pm \textbf{8,209}$	33,195 ± 5,775	99.98 ± 0.00	99.85 ± 0.05	
Palmer	Illinois	$26,038 \pm 3,753$	-	99.95 ± 0.03	-	
	Nebraska	$36,978 \pm 5,399$	$58,004 \pm 9,434$	98.89 ± 0.23	$99.93 \pm \textbf{0.02}$	
amaranth	Missouri	13,384 ± 27,363	60,221 ± 21,991	99.98 ± 0.00	99.67 ± 0.20	
	Tennessee	22,833 ± 4,914	-	99.96 ± 0.01	-	
	Illinois	25,649 ± 5,800	11,833 ± 2,277	99.98 ± 0.01	94.98 ± 0.94	
Waterhemp	Nebraska	60,228 ± 8,348	82,811 ± 15,051	99.99 ± 0.00	99.63 ± 0.10	
	Missouri	19,727 ± 2,493	23,787 ± 4,200	100.00 ± 0.00	99.84 ± 0.04	
	Wisconsin	17,459 ± 2,625	38,221 ± 7,956	99.96 ± 0.00	98.80 ± 0.30	

Adapted from: Schwartz, L., Norsworthy, J., Young, B., Bradley, K., Kruger, G., Davis, V., Steckel, L., Walsh, M. (2016). Tail Waterhemp (*Amaranthus tuberculatus*) and Palmer amaranth (*Imaranthus palmeri*) Seed Production and Retention at Soybean Maturity, Weed Technology, 30(1), 284-290. doi:10.1614/WT-D-15-00130.1

Extension UNIVERSITY OF WISCONSIN-MADISON

Fall Weed Seed Management- Seed Retention


TABLE 2	Total Seed Captured per plant	% Seed Shattered before crop harvest	% Seed Shattered during harvest delay	% Retained on plant after simulated harvest
Redroot pigweed	149,427 ± 27,267	7.2 ± 1.1	7.7 ± 0.9	85.1 ± 17.5
Common ragweed	$2,204 \pm 382$	7.2 ± 1.2	14.1 ± 2.4	78.7 ± 15.3
Common lambsquarters	62,091 ± 11,332	4.3 ± 0.7	40.6 ± 8.1	55.2 ± 12.0
Common cocklebur	1,325 ± 155	14.4 ± 3.5	48.2 ± 8.2	38.9 ± 5.5
Giant foxtail	$26,334 \pm 2,124$	26.3 ± 3.6	24.0 ± 2.8	49.8 ± 5.2
Large crabgrass	$84,721 \pm 11,637$	46.3 ± 6.9	13.7 ± 1.9	40.0 ±7.7

Adapted from: Haring S. (2017) Harvest Weed Seed ontrol: An Integrated Weed Management Strategy for Organic and Conventional Production System. M.S. Thesis. Blacksburg, VA: Virginia Tech. 64 p

Waterhemp Seed

Waterhemp Seed Dispersal: Combines

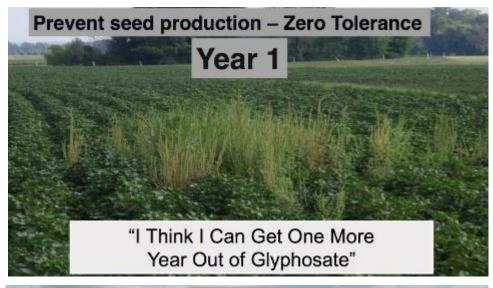
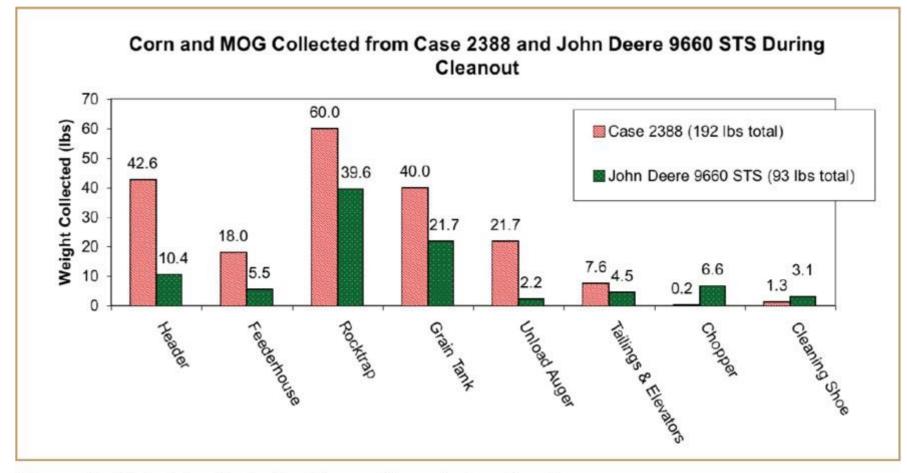


Photo Credit: Dr. Mark Loux, Weed Scientist, The Ohio State University

Combine Weed Seed Dispersal

Combine Cleaning

Extension UNIVERSITY OF WISCONSIN-MADISON


Where Weed Seeds Hide

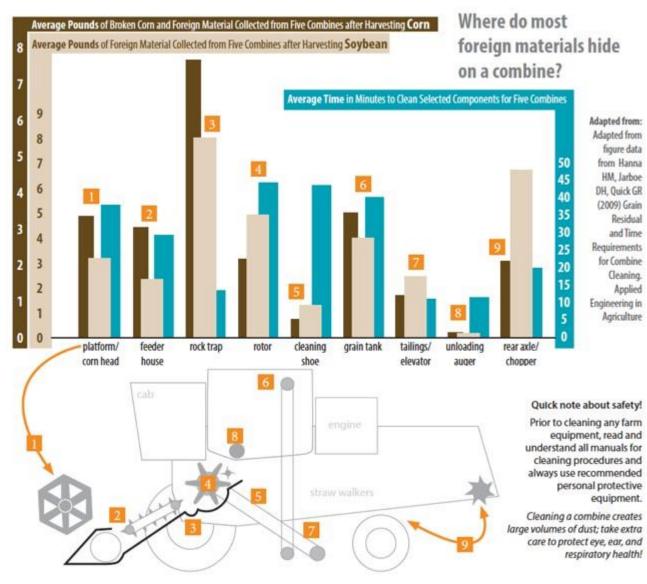
Combine Cleaning Video!

Where Undesired Seeds May Hide

Figure 1. Material collected inside combines during cleaning.

John Deere data courtesy of: Hanna, H.M., Quick, G.R., and Jarboe, D.H. 2004. Combine Cleanout for Identity Preserved Grains. Proceedings of the 2004 International Quality Grains Conference, Indianapolis, Indiana. July 19-22, 2004

So Your Going To Clean Your Combine Between Fields?


<u>Read</u>, <u>Follow</u>, and <u>Understand</u> all safety instructions for the combine and cleaning equipment!

Use proper Personal Protective Equipment!

Where to Focus Cleaning Time

Weed Seed Movement Through Combines: 2020 Study

Nick Arneson: Outreach Specialist UW-Madison Cropping Systems Weed Science Program **Dr. Rodrigo Werle:** UW-Madison Extension Cropping Systems Weed Scientist

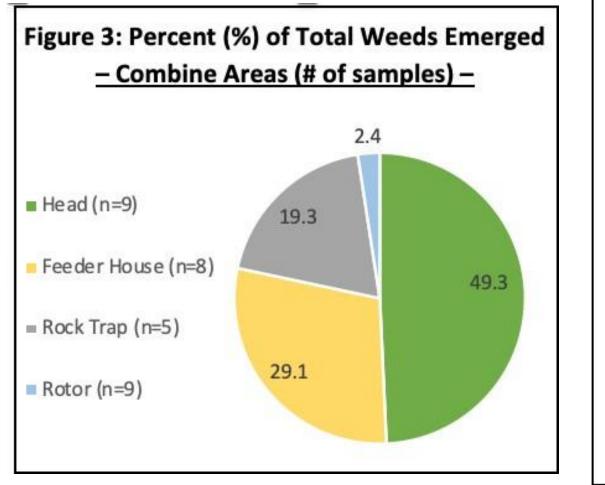
Thank you to everyone who helped collect samples for this project!

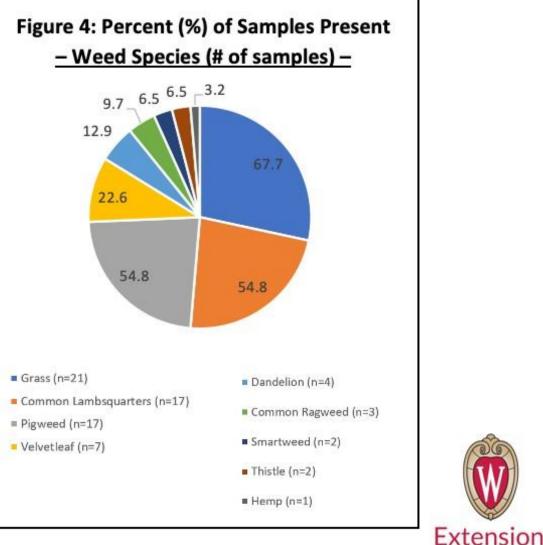
Cropping Systems Weed Science

Extension UNIVERSITY OF WISCONSIN-MADISON

Weed Seed Movement Through Combines: 2020 Study

- 97% of combine samples received (n=31) contained viable weed seed
- Most frequently observed weeds (% of samples present) were: grass (~68%), pigweed (~55%), and common lambsquarters (~55%).
- Combine head samples contained the most weed species with ~49% of the total weeds emerged (Feeder house, ~30%; Rock trap, ~19%; Rotor, ~2%)




Weed Seed Movement Through Combines: 2020 Study **Combine Head** Velvetleat 642:3 **Feeder House** Dandelion Common Lambsquarters Pigweed # of total weeds emerged; # of weed species Cropping Systems Weed Science Extension NPN

Arneson, N.J., D.H. Smith, R. Werle (2020) Weed Seed Movement Through Combines: 2020 Case Study. WI Cropping Systems Weed Science Research Brief (in-review)

UNIVERSITY OF WISCONSIN-MADISON

Weed Seed Movement Through Combines: 2020 Study

UNIVERSITY OF WISCONSIN-MADISON

Arneson, N.J., D.H. Smith, R. Werle (2020) Weed Seed Movement Through Combines: 2020 Case Study. WI Cropping Systems Weed Science Research Brief (in-review)

Tillage Weed Seed Movement

Extension UNIVERSITY OF WISCONSIN-MADISON

Tillage Weed Seed Movement

Cost of Spreading Waterhemp Seed

UNIVERSITY OF WISCONSIN-MADISON

Vencill et. al (2012) Herbicide Resistance: Toward an Understanding of Resistance Development and the Impact of Herbicide-Resistant Crops. Weed Science: Special Issue 2012, Vol. 60, No. sp1, pp. 2-30.

Future Cost of Waterhemp Seed Dispersal

WSSA Journals


Technolog

Invasive Plant

Science and

Manageman

- Hand weeding
- Failed herbicide attempts
- Tillage
- Yield loss in current and <u>future years</u>
- Increased cost to reduce seed bank
- **Export** Restrictions

In 2016, China put in place a new grain import law to keep invasive weeds and other plant pests from entering their country. In 2017, they informed USDA that U.S. grain shipments, particularly soybeans, did not comply with the new law. They specifically cited increased detections of weed seeds. These weed seeds threaten U.S. access to China's soybean market.

Soybeans are critical to the U.S. economy. Approximately 1 of every 3 bushels of U.S. soybean are shipped to China, making it the United States' largest market for this commodity. In 2017, this export was valued at \$12.4 billion, which is approximately 91% by value of all U.S. grains shipped to China.

Preventing Waterhemp Seed Movement

- Avoid Weed Seed Production!
- Clean equipment!
- Harvest fields with resistance last!
- Prevent field-to-field and within-field movement of weed seed or vegetative propagules
- Manage weed seed at harvest and after harvest to prevent a buildup of the weed seedbank
- Prevent influx of weeds into the field by managing field border

Extension RSITY OF WISCONSIN-MADISON

Norsworthy et. al (2012) Reducing the Risks of Herbicide Resistance: Best Management Practices and Recommendations. Weed Science: Special Issue 2012, Vol. 60, No. sp1, pp. 31-62.

Dedicate Time to Fall Weed Seed Management

Considerations for Fall 2021: Cover Crop Establishment

Daniel H. Smith, CCA

Southwest Regional Specialist Nutrient and Pest Management Program

University of Wisconsin-Madison CALS and Division of Extension

Disclaimer: Any use of trade names is for descriptive purposes and does not represent an endorsement by the author.

Possible Cover Crop Benefits:

- Protect soil from erosion
- Reduce nutrient losses
 - Preventing runoff
 - Scavenging residual nitrogen
- Nitrogen fixation- legumes
- Suppress weed growth
- Insect support/suppression
- Soil conditioning/improve soil health
 - Add soil organic matter
 - Enhance soil biology
 - Alleviate/prevent compaction
- Supplemental forage production

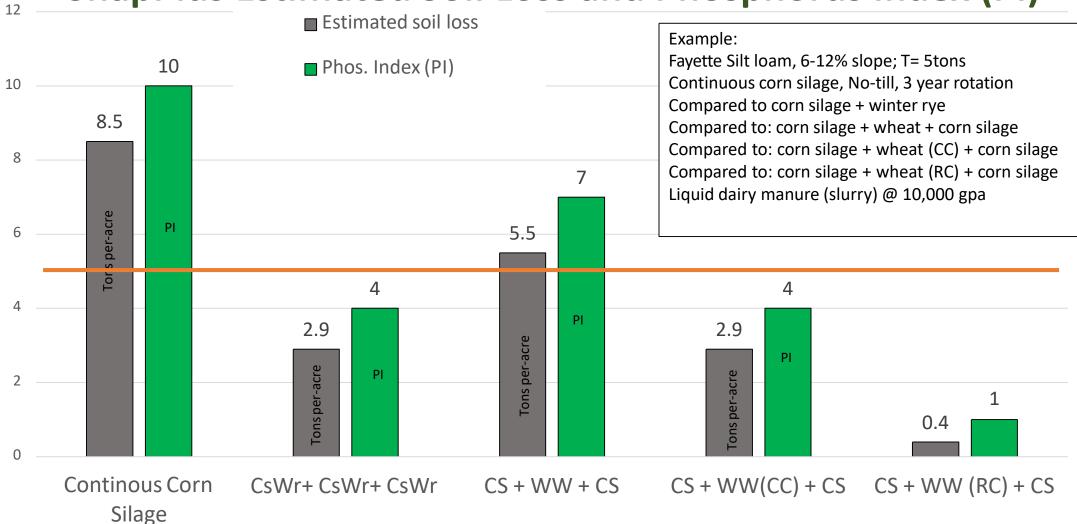
!"#\$%& ()& * +,-.#/0#1"2 (3\$/4,".,\$2 52-2#\$46 * 78,4#./90 :;\$93\$#<=) :>??@=) A#0#3/03 49B2\$ 4\$9C- C\$9D/#1"E) !9""232 ;#\$%& AFG + (57)

UNIVERSITY OF WISCONSIN-MADISON

Cover Crop Establishment Timing

- After harvest of early-season crops such as winter wheat/small grains or early vegetables
- Frost-seeded into winter wheat/winter cereal grains
- Following harvest of corn as silage
- Inter-seeded into corn or soybeans
 - Early, V5 corn
- Overseeded
 - Late summer (corn- 50% dry down; soybeans R7 or later)

Cover Crop Challenges



Nutrient Management and Cover Crops SnapPlus Estimated Soil Loss and Phosphorus Index (PI)

Nutrient Management and Cover Crops- N Scavenging

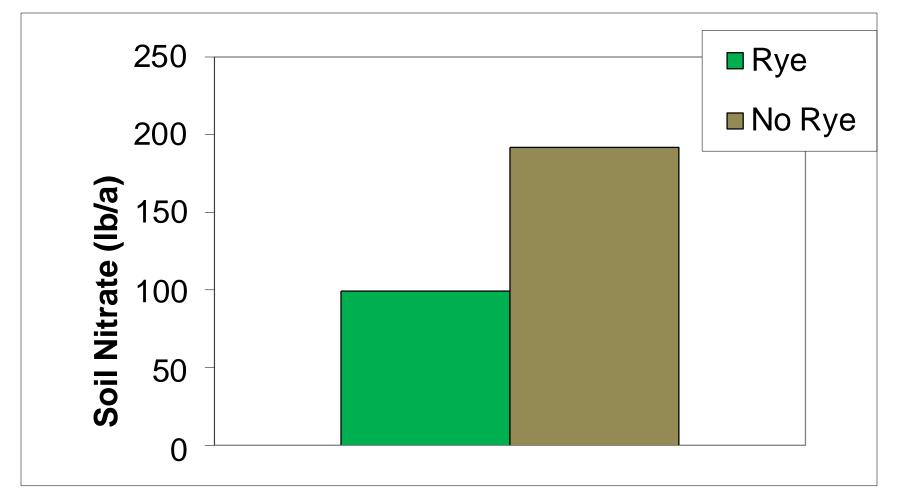


Figure 1. Effectiveness of rye reducing soil profile nitrate at spring rye harvest following fall application of 40 T ac⁻¹ dairy manure at Lancaster, Wisconsin. Stute, et. al. "Planting Winter Rye after Corn Silage: Managing for Forage" University of WI, NPM Program

Extension UNIVERSITY OF WISCONSIN-MADISON N Fixation via Rhizobia (bacteria) that live symbiotically with legume roots – Nodules

Seeds of legume species should be inoculated with the correct rhizobia bacteria (inoculant) Nutrient Management and Cover Crops -Nitrogen fixation w/legumes – e.g., Clovers, Field Peas, Vetches, Alfalfa

Cover Crop Species Selection

Cover Crop Goals: Reduce Erosion Suppress Weeds Build Soil Health

Cover Crop A.Ryssyl 4 4 4 WC Ryss 4 4 4 MC Ryssyl 4 4 4 A.Ryssyl 4 4 4	a =Very g	uer ¹	1000. 1 =1	-ar, ⊡ =P	00F			
A Byogr/ 4 4 4 Byo 4 4 4 WC Byo/ 4 4 4	Mark 1	um ¹	العمو	* التو				
A Byogr/ 4 4 4 Byo 4 4 4 WC Byo/ 4 4 4			-				0.00	1000
Byg 3444 WC Byg/ 444								-
WC Ryo/ 4 4 4					_			
Byeg 4 3 4								
WC Rye/ 4 3 4								
Bartey, W 4 3 3								
Triticale 4 3 3								
W.Barley/ 4 3 3								
Wheat. W 4 3 3					11	•		
Sorphum 3 4 4								
Sorghum 3 4 4								
Sudanorass 3 4 4								
Milet. Pearl 3 3 4			2					
Milot. Ja 3 3 3	_					_		
Onts	_		_		_			
Buckwheat 2 4 2								
Oats/ OS 2 4 2				-				
Radish O 2 4 2								
Clover. B. 2 3 3						_		
Clover. B., 2 3 3			-		_	-		
Collards 2 3 2				14	_			
Mustard 2 3 2	-	_				-		
Rapeseed 2 3 2								
Turrip. E 2 3 2	_							
W. Pea/ 2 3 2								
Clover Cr 2 2 3				1				
Clov 12 2 3				1				
Vetch, Hairy 2 2 3			1					
Cowpea 2 2 2								
Sunn Hemp 2 2 2			1.1					
Swee 2 2 2								

Available Cover Crops

Planting periods: Reliable Establishment FreezerMoisture Risk to Establishment Goal fulfillment: 4 =Excellent, 3 =Very good, 2 =Good, 1 =Fair, 0 =Poor

https://mccc.msu.edu/covercroptool/

Extension UNIVERSITY OF WISCONSIN-MADISON

Cover Crops <u>after</u> Vegetables/Small Grains

	The first skip is survey with ones around it to instally the prevent on the solutions. Even in subscript the survey of the solution prevent into the solution installation instartion in prevent and constants water of them makes the survey of the solution instartion in prevent of the survey of the solution instartion in the solution of the solution of the solution instartion instartion of the solu
THE PARTY	Why use cover crops?
6	C transet of the talling
122	Cycling Antony residue oversets Reduct receive Vations Preter and Preterior
1	arver to a scherges assert
1	Knakket pill kolning account for wapend with infliction Alphint preset conpactor
-Angel	
	Support investigation and policities

	Local weather	and soil conditions	may affect establishment	dates!
	Cover Ci	op Species after Smal Established b	ll Grains and Vegetable Crops y mid-August	5
	Drilled Seeding Rate ¹ (Ib/a)	Broadcast Seeding Rate ² (lb/a)	Incorporated Broadcast Seeding Rate (lb/a)	Seeding Depth (Inches)
SMALL GRAIN/GRASS SPECI	ES ³			
Annual Ryegrass	12-20	14-24	13-22	0.25-0.5
Oat ⁴	30-60	36-72	33-66	0.75-1.5
Sorghum-sudangrass	15-20	Not Recommended	17-22	0.5-1.5
Spring Barley ⁴	50-75	60-90	55-82	0.75-1.5
Winter Triticale	40-60	48-72	44-66	0.75-1.5
Winter Barley ⁵	50-75	60-90	55-82	0.75-1.5
Winter Rye	40-60	60-90	44-66	0.75-1.5
Winter Wheat ⁶	40-60	48-72	44-66	0.75-1.5
BRASSICAS ⁷				
Radish	3-6	3-7	3-7	0.5075
Rapeseed	2-5	2-6	2-5	0.2505
Turnip	1-4	1-5	1-4	0.25-0.5
LEGUMES/BROADLEAVES				
Berseem Clover	8-12	10-18	9-17	0.25-0.5
Cowpea	50-90	Not Recommended ⁸	55-99	1.0-1.5
Crimson Clover	10-12	12-18	11-17	0.25-0.5
Field Pea/Forage Pea	50-80	Not Recommended ⁸	55-88	1.0-1.5
Hairy Vetch	15-20	18-24	16-22	1.0-1.5
Medium Red Clover	8-12	9-14	9-13	0.25-0.5
Sunflower (mixture only)	5-7	Not Recommended ⁸	5-7	1.0-1.5

³Seeding rates should be based on Pale Live Seed. ⁵ Broadcast establishment may be incorporated. However, care should be given to ensure planting depth is monitored. ³Seeding rates are for cover crop use, forage seeding rates will be higher. ⁴ Oats and spring barley planted following small grains will more reliably establish in Southern W ⁵ Winter barley may not overwinter in Wisconsin. ⁶ Volunteer winter wheat may provide beneficial cover. ⁷ Brassicas should be seeded in a mixture to prevent soil erosion. ⁸ Species is not recommended for broadcast without incorporation due to seed size.

Smith et al. 2019. "Cover Crops 101" University of Wisconsin-Madison. Extension Publication A4176.

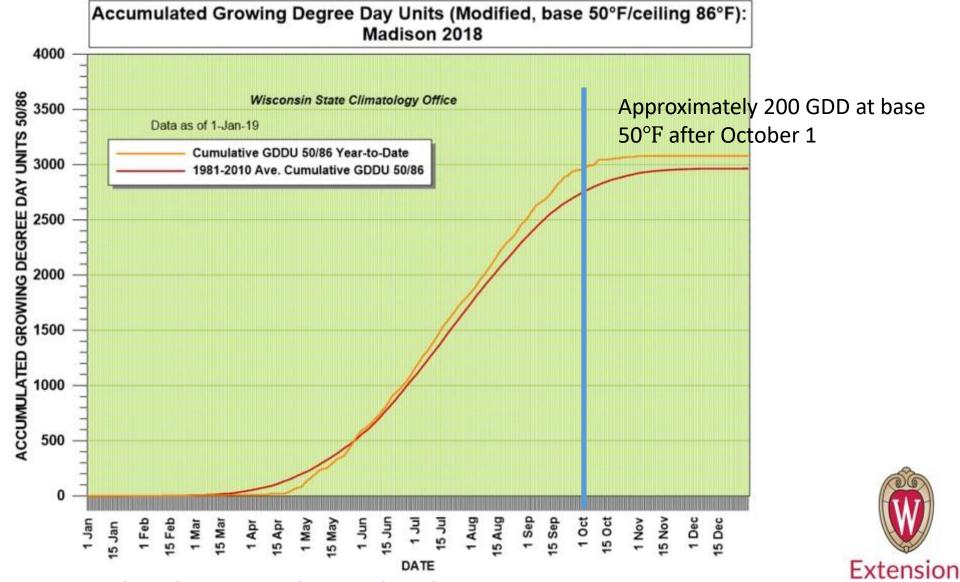
Cover Crops <u>after</u> Silage Corn

	Cov	er Crop ¹ Species Sele Established by	ection after Corn Silage mid-September	
LAZ	Drilled Seeding Seeding Rate ² (lb/a)	Broadcast Seeding Rate ³ (lb/a)	Incorporated Broadcast Seeding Rate (lb/a)	Seeding Depth (inches)
SMALL GRAIN/GRASS SPE	CIES ⁴			
0at ⁵	30-60	36-72	33-66	0.75-1.5
Spring Barley ⁵	50-75	60-90	55-83	0.75-1.5
Winter Triticale	40-60	48-72	44-66	0.75-1.5
Winter Barley ⁶	50-75	60-90	55-82	0.75-1.5
Winter Rye	40-60	60-90	44-66	0.75-1.5
Winter Wheat	40-60	48-72	44-66	0.75-1.5

¹Other grass species, brassicas, and legumes are not recommended following silage corn due to lack of growing degree days left in the season. Interseeding and overseeding options may provide a wider variety of cover crop options. ²Seeding rates should be based on Pure Live Seed. ³Broadcast establishment may be incorporated. However, care should be given to ensure planting depth is monitored. ⁴Seeding rates are for cover crop use, forage seeding rates will be higher. ⁵Oats and spring barley planted following silage corn harvest will more reliably establish in Southern WI. ⁶Winter barley may not overwinter in Wisconsin.

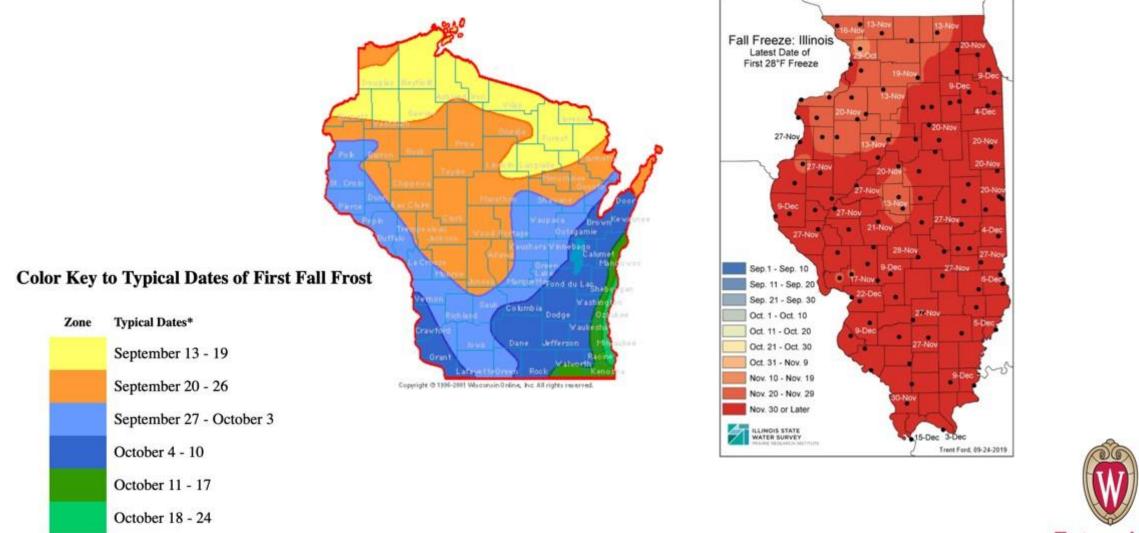
Smith et al. 2019. "Cover Crops 101" University of Wisconsin-Madison. Extension Publication A4176.

Southern WI Cover Crops <u>after</u> Grain Soybean and Corn


	Cover Crop ¹ Species Selection Following Grain Corn and Soybeans Established by Late October						
Page 3	Drilled Seeding Seeding Rate ² (lb/a) Broadcast Seeding Rate ³ (lb/a) Incorporated Broadcast Seeding Rate (lb/a) Seeding (lb/a) (lb/a)						
SMALL GRAIN/GRASS SPECIES ⁴							
Winter Rye	40-60	60-90	44-66	0.75-1.5			
Winter Triticale	40-60	48-72	44-66	0.75-1.5			

¹Other grass, brassica, and legume species are not recommended following grain harvest due to lack of growing degree days left in the season. Interseeding and overseeding options may provide a wider range of cover crop options due to the extended growing season. ²Seeding rates should be based on Pure Live Seed. ³Broadcast establishment may be incorporated. However, care should be given to ensure planting depth is monitored. ⁴Seeding rates are for cover crop use, forage seeding rates will be higher.

Smith et al. 2019. "Cover Crops 101" University of Wisconsin-Madison. Extension Publication A4176.


Why Only A Few Cover Crop Options?

UNIVERSITY OF WISCONSIN-MADISON

Source: <u>http://www.aos.wisc.edu/~sco/clim-history/stations/msn/msn-gddu-2018.gif</u>

Why Only A Few Cover Crop Options?

Sources: <u>https://www.wisconline.com/almanac/gardening/fallfrost.html</u> https://stateclimatologist.web.illinois.edu/2019/09/24/illinois-first-fall-freeze-climatology/ Extension UNIVERSITY OF WISCONSIN-MADISON

Why Only A Few Cover Crop Options?

	Winterkill
SMALL GRAIN/GRAS	S SPECIES
Annual Ryegrass	Maybe
Oat	Yes
Sorghum-sudangrass	Yes
Spring Barley	Yes
Winter Triticale	No
Winter Barley	Maybe
Winter Rye	No
Winter Wheat	No

BRASSICAS	
Mustards	Yes
Radish	Yes
Rapeseed	Maybe
Turnip	Yes
LEGUMES	
Berseem Clover	Yes
Cowpeas	Yes
Crimson Clover	Maybe
Field Pea/Forage Pea	Yes
Hairy Vetch	No
Red Clover	No
Sunflower	Yes

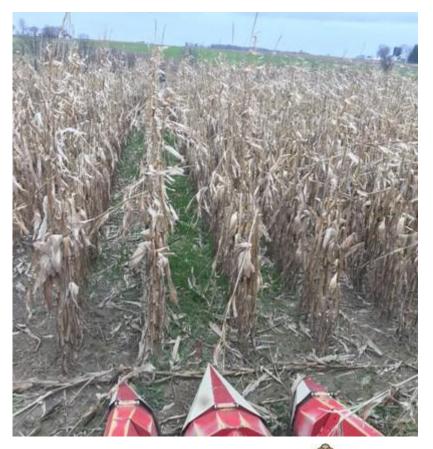
Smith et al. 2019. "Cover Crops 101" University of Wisconsin-Madison. Extension Publication A4176.

UNIVERSITY OF WISCONSIN-MADISON

For Success:

- Overseed when corn is 50% dry or dry to the ear.
- Consider harvest timing.
- Plant a species that overwinter (or a mix of overwintering and species susceptible to winterkill.

Extension UNIVERSITY OF WISCONSIN-MADISON


UNIVERSITY OF WISCONSIN-MADISON

Consider Hybrid Maturity!

Cover Crop Establishment Method

November 10, 2019

Cover Crop Establishment Method

May 6, 2020

Herbicide Carryover

Extension UNIVERSITY OF WISCONSIN-MADISON

Herbicide Carryover/Persistence

- May result in cover crop damage and stand failure
- Can be avoided by careful selection of herbicides
- Chemical properties of the herbicide- half life
- Rate of application
- Soil pH- heavy soil and high pH= longer residual
- Organic matter content
- Amount of surface plant residue- tillage dilutes residues
- Temperature
- Rainfall- less rainfall=longer residual
- Microbial degradation

Nontreated

Example of herbicide carryover

Citation: Walsh, Joseph D., Michael S. Defelice, and Barry D. Sims. "Soybean (Glycine Max) Herbicide Carryover to Grain and Fiber Crops." Weed Technology 7 (1993): 625-32

Influence Factors

Why is Herbicide Carryover Complicated?

- Herbicide Persistence
 - Crop Rotation
- Herbicide Rotation Intervals
 - Weed Resistance
 - Troublesome Weeds

GUIDE TO RELATIVE SENSITIVITY OF COMMON COVER CROPS TO VARIOUS HERBICIDES

Herbicide	Common Name	Crimson Clover	Austrian winter pea	Hairy Vetch	Rape- seed	Radish	Turnip	Annual Rye- grass	Oats	Rye	Winter Wheat
2,4-D amine	2,4-D					·					
atrazine	Atrazine										
S-metolachlor	Dual/Brawl										· · · · · · · · · · · · · · · · · · ·
imazethapyr	Pursuit										
chlorimuron	Classic										
cloransulam	FirstRate										
dicamba	Clarity										
flumioxazin	Valor								1		
fomesafen	Flexstar		1								
isoxaflutole	Balance Flexx										
mesotrione	Callisto										
pyroxasulfone	Zidua					1					
sulfentrazone	Spartan			L							
sulfen+chlorim	Authority XL										
more tolerant ra	nge when planted 90	days after an	plication de	pendent o	on other va	ariable fact	ors				
less tolerant rang	ge so >90 days after	application d	ependent on	other val	riable fact	ors					
least tolerant ran	ge so >120 days afte	r application	dependent o	n other v	ariable fac	ctors					

Source: Compiled by West Central Distribution; University Data: University of Missouri, Penn State, University of Wisconsin

Bioassay

- Field vs. Greenhouse
- Plant small area of cover crop in field soil
- Assess for injury
- Does not replace the legal rotational restrictions

Cover Crop vs. Forage Crop

• Cover Crop= No Biomass Harvest

- Forage Crop= Biomass is Harvested
- Cover Crop can be utilized as Forage

<u>Most Pesticide labels may not have</u> <u>cover crop data only forage crop!</u>

• Plan for pesticide applications and restrictions

Rotational Restrictions

•Herbicide Label (Search for Rotational Interval, Restriction, Cover Crops, Crop Rotation)

• Extension Publications- Provide high level overview

Herbicide Rotational Restrictions FOR COVER AND FORAGE CROPPING SYSTEMS

Daniel H. Smith, Richard Proost, Nutrient and Pest Management Program; Maxwel Coura Oliveira, Ryan Dewerff and Rodrigo Werle, Department of Agronomy; University of Wisconsin-Madison

This publication provides a starting point of reference when considering using cover crops following herbicides in the cropping system. This publication does not replace the herbicide label. This publication outlines rotational intervals for many commonly used herbicides in Wisconsin. The rotational interval is the required amount of time from herbicide application to subsequent crop establishment for forage or harvest value. For example, a herbicide is applied to soybeans with a 10-month rotational interval for winter cereal rye. The rye could be established 10 months after the herbicide application for food or feed value. This rotational interval is legally required period prior to crop harvest for feed or forage. Cover crops intended for forage value must follow the rotation interval. Cover crops utilized for soil building do not need to follow the rotational interval, however, they may still be prone to herbicide injury. This herbicide injury is often attributed to herbicide carryover and the chances of injury can be better understood after a field bioassay. The herbicide label must be referenced prior to making any management decisions. The rotational intervals stated in this publication are the maximum rotational restriction taken from the most current herbicide label available at time of printing.

Herbicide Carryover

For cover crops to accomplish their intended goals, they must establish well; establishment of cover crops can be compromised by use of residual herbicides, the herbicide activity in the soil for a period of time after application and are applied to the preceding cash crop. The persistence of these residual herbicides may affect cover crop establishment later in the growing season and can be affected by a wide range of management (tillage, application rate, and herbicide application method) and soil properties (moisture, temperature, soil colloid properties, chemical reactions, pH, microbial population, soil texture and organic matter) (Krausz et al., 1992). Cover cropping and using residual herbicides is not impossible but is challenging. Herbicide resistant weed management should be considered when planning herbicide applications. The cost of herbicide program, cover crop benefits, and resistance management should all be considered.

Source: https://ipcm.wisc.edu/download/pubsPM/2019_RotationalRestrictions_final.pdf

Corn Herbicides Often Injurious to Cover Crop Establishment

- Topramezone (Impact)
- Mesotrione (Callisto, Halex GT, etc.)
- Clopyralid (Stinger, SureStart, Resicore)
- Isoxaflutole (Balance Flexx)
- Pyroxasulfone (Zidua)
- Nicosulfuron (Accent Q)
- Flumetsulam (Python)
- S-metolachlor (Dual II Magnum)
- Atrazine (AAtrex)

Sources: UW-Madison (data unpublished), Mizzou Weed Science, U of M Weed Science, Penn State, Purdue

Any use of trade names is for descriptive purposes and does not represent an endorsement by the authors.

Cover Crop Establishment Silage Corn- Still limited re) Interseeding- V4 Overseeding- 50% dry down Fall- Winter/Cereal Rye

Winter/ Cereal Rye= almost no herbicide issues

Soybean Herbicides Often Injurious to Cover Crop Establishment

- Fomesafen (Flexstar/Prefix)
- Pyroxasulfone (Zidua)
- Imazethapyr (Pursuit)
- Acetochlor (Warrant)
- Sulfentrazone (Authority products)
- Flumioxazin (Valor products)
- S-metolachlor (Dual II Magnum)
- Chlorimuron (Classic)

Cover Crop Establishment

Interseeding- Maybe 30 inch rows Overseeding- R7 leaf drop Fall- Winter/Cereal Rye

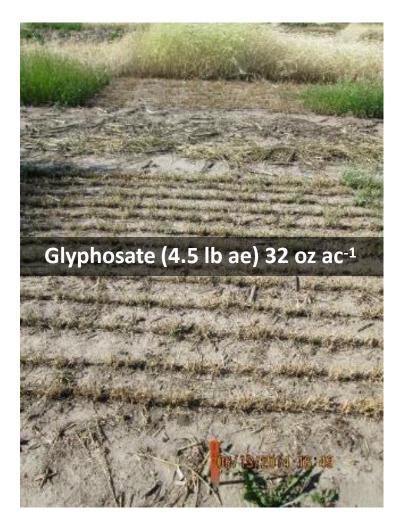
Winter/ Cereal Rye= almost no herbicide issues

Sources: UW-Madison (data unpublished), Mizzou Weed Science, U of M Weed Science, Penn State, Purdue

Any use of trade names is for descriptive purposes and does not represent an endorsement by the authors.

Cover Crop Termination

173 A.	Winterkill	Crimping	Mowing	Tillage ¹	Herbicide		
SMALL GRAIN/GRAS	S SPECIES						
Annual Ryegrass	Maybe	No	No	Yes			
Oat	Yes	Yes	Yes	Yes Yes Yes	Glyphosate ² 16-32 fl oz per acre		
Sorghum-sudangrass	Yes	No	No				
Spring Barley	Yes	No	Yes				
Winter Triticale	No	Yes	Yes	Yes			
Winter Barley	Maybe	Yes	Yes	Yes			
Winter Rye	No	Yes	Yes	Yes			
Winter Wheat	No	Yes	Yes	Yes			
BRASSICAS		·					
Mustards	Yes	No	No	Yes			
Radish	Yes	No	No	Yes	Glyphosate ²		
Rapeseed	Maybe	No	No	Yes	16-32 fl oz per acre		
Turnip	Yes	No	No	Yes			
LEGUMES							
Berseem Clover	Yes	No	No	Yes			
Cowpeas	Yes	No	Maybe	Yes	Glyphosate ² 16-32 fl oz per acre +		
Crimson Clover	Maybe	No	No	Yes Yes			
Field Pea/Forage Pea	Yes	No	Yes				
Hairy Vetch	No	Yes	No	Yes	Growth Regulator		
Red Clover	No	No	No	Yes Yes	8-16 fl oz per acre		
Sunflower	Yes	Yes	Yes				


¹Tillage is not a recommended termination practice unless the cropping systems has limited termination options. Frequent tillage can degrade soil health. Note that tillage may require multiple passes to fully incorporate the cover crop. ² Glyphosate formulation - 4.5 lb acid equivalent per gallon. Always read and follow the herbicide label. The label is the law.

Smith et al. 2019. "Cover Crops 101" University of Wisconsin-Madison. Extension Publication A4176.

Cover Crop Termination

- Termination should occur during a period of active growth
- Day/ night temperatures should be 55/40°F and should be above theses temperatures for 3 days pre and post application
- Application should occur four hours prior to sunset

Smith et al. 2019. "Cover Crops 101" University of Wisconsin-Madison. Extension Publication A4176.

UNIVERSITY OF WISCONSIN-MADISON

Spring Management Beyond the Basics

Extension UNIVERSITY OF WISCONSIN-MADISON

Spring Management Beyond the Basics

AXXXX

Planting methods

Cover crops can be interseeded into

com during the growing season by

broadcasting, using either aerial or

ground equipment (e.g. airflow or

broadcast fertilizer spreader). Cover

crops can also be interseeded using a high-clearance or modified orain

drill, which increases seed to soil

land et al. 2018, Wilson et al. 2014)

Noland et al. (2018) found that drill

interseeding had better cover crop

establishment than broadcasting for

If interseeded too early, cover crops have the potential to affect com

yields. On the other hand, cover crops may not successfully establish

contact (Curran et al. 2018, No-

most cover crop species tested.

Corn growth stage

row-cultivated corn

Daniel H. Smith, Virginia M. Moore, Matt Ruark, Erin Silva

Key facts

- Interseeding methods · Interseeding involves planting a cover crop while a cash crop is still growing in the field.
- It can be challenging to establish cover crops after corn harvest, but inter seeding allows for earlier planting (before corn is harvested).
- Wisconsin research has demonstrated red clover, winter nye, and radish established well in an interseeding system.

Why interseeding?

There are many known benefits of including overwintering cover crops in a crop rotation. Cover crops can have positive impacts on soil and water quality as well as nutrient and pest management (Clark 2007, Curran et al. 2018, Reicosky and Forcella 1998). However, in the Upper Midwest it can be challenging to establish cover crops due to the lack of growing degree days after corn is harvested. This late planting window also limits the diversity of cover crop species that can be used (Curran et al. 2018, NCR SARE and CTIC 2016, ding provides a way to establish

by planting cover crops when com

Cover crop species A wide range of cover crop species have been tested in interseeding systems. It important to select pecies that can tolerate the shaded ironment under the com canoby and that can overwinter in your Smate. The cover crop should also have limited growth under the com canopy to avoid competing with the corn. Success of a particular species in an interseeding system will also depend on season-specific conditions - for example, drought stress may increase competition between the cover ratio and corn.

in Wise

dac

Herbici

Labeled

ò

alc

inter

Restriction

2 ti 0 Annuel 4. Sheedder 1.4-0 (W Sheekle 1/4 10.0 310 Autors 10 M 38.M 24 M 26.86 34.8 34M 348 34.86 JAN. JAN Access 0. ADD TOM AM 410 AM 18M AM 18M 18M 18M 18M 18M Argenti Access Title 10.00 NI M TAM LAN TAM TAN Affects broubge 3.186 118 Attanta 30.M Ale Abs 197 MM MM Abhann Arthen Antheir Aft Anthen Hes Authors Misc 10.44 TAM TAM TAM TAM TAM America Ameun Pa ILM TEM TEM Auger 1 Authority Suppl 12 M 4 M 10 M 4.81 10.81 1.1.81 10.91 10.91 10.91 10.91 Authority Ethe 10.04 12.00 4.1.00 TEM ASH ASH ASH 12M 12M 12M 12M 12M Authority Test 18.00 12.M 4.14 12M 12M IBM 12M ISM NM 10M Authority Mass 10.00 A.00 10.00 A.00 10.00 10.00 10.00 10.00 Authority M72 12.M 4.14 TEM TEM TEM ON TEM TEM TEM TEM Authority Sagers Authority II 10 M 12M 4M 12M 4M 36M 4M 36M 36M 36M 36M 36M 38M 16.M 16.M 16.M Astune

Restrictions assume over mup planted in summer fall shown in months; the must restrictive data is shown

D-stays; M-months; N.- not listed; D- typically a labeled crop with no plant back restriction FF- full year The product information compiled here is intended to be as accurate as possible at the time of printing. Refer to product label for more detailed restriction information. Always follow the product's current label restrictions and instruction

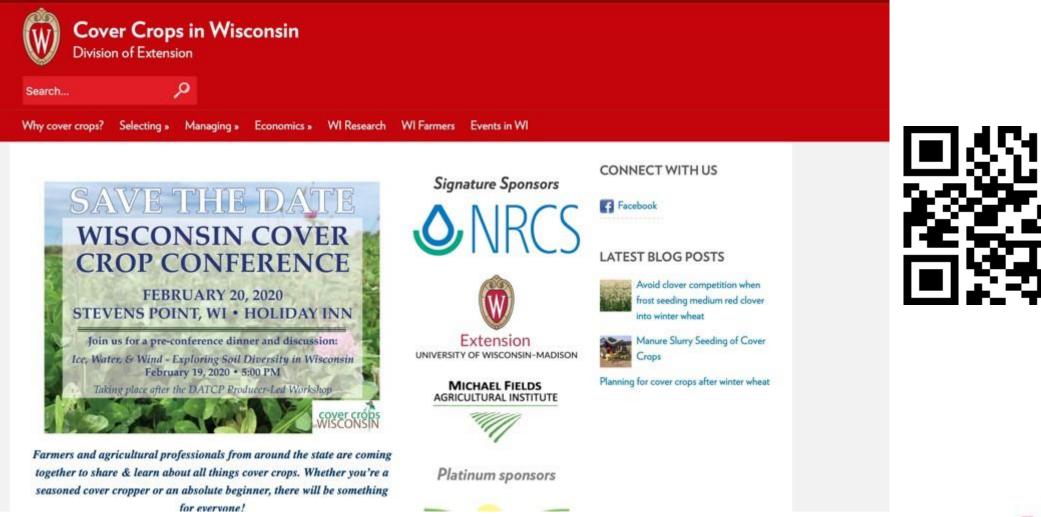
Extension

Herbicide Rotational Restrictions for Cover and Forage Cropping Systems

This publication is intended to be a starting point when considering using cover crops while utilizing herbicides in the cropping system. This publication does not replace the herbicide label. This publication outlines rotational intervals for many commonly used herbicides in Wisconsin. The rotational interval is the required amount of time from herbicide application to subsequent crop establishment for forage or harvest value. Example- A herbicide is applied to soybeans with a 10 month rotational interval for winter rye. Winter rye could be established 10 months after the herbicide application for food or feed value. This rotational interval is legally required prior to crop harvest for feed or forage. Cover crops intended for forage value must follow the rotation interval. Cover crops utilized for soil building do not need to follow the rotational interval, however, they may still be prone to herbicide injury. This herbicide injury is often attributed to herbicide carryover and the chances of injury can be better understood after a field bioassay. The herbicide label must be referenced prior to making any management decisions. The rotational intervals stated below are the maximum rotational restriction taken from the most current herbicide label available at time of printing.

Herbicide Carryover

For cover crops to accomplish their intended goals, they must establish well, establishment of cover crops can be compromised by use of residual herbicides, those have activity in the soil for a period of time after application, applied to the preceding cash crop. The persistence of these residual herbicides is what will affect the cover crop establishment later in the growing season and can be affected by a wide range of management (tillage, application rate, and herbicide application method) and soil properties (moisture, temperature, soil colloid properties, chemical reactions, pH, microbial population, soil texture and organic matter) (Krausz et al., 1992). Cover cropping and using residual herbicides is not impossible but is challenging. Herbicide resistant weed management should be considered when planning herbicide applications. The cost of herbicide program, cover crop benefits, and resistance management should all be considered.


Cover Crop vs. Forage Crop

A crop is classified as a cover crop when no biomass is harvested. A cover crop is established for benefits to

cover crop becomes a forage crop when biomass is harvested grazing or mechanical collection. A cover crop can be used for provide the plant back restriction time required from pesticide is, only forage crops. Therefore, requiring the maximum rotais are not followed, harvesting a cover crop for forage value ength and should be examined for all pesticides and crops in inted for any value can be legally established following any es all responsibility for cover crop injury or failure that may re-

UNIVERSITY OF WISCONSIN-MADISON

For More Info Visit:

Extension UNIVERSITY OF WISCONSIN-MADISON

Thanks!

Daniel H. Smith, CCA Southwest Regional Specialist Nutrient and Pest Management Program UW-Madison CALS and Division of Extension

> Email: <u>dhamith@wisc.edu</u> Phone: 608-219-5170 Twitter: @agronomybadger

Questions?

Disclaimer: Any use of trade names is for descriptive purposes and does not represent an endorsement by the author.